Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving Accuracy and Efficiency of Implicit Neural Representations: Making SIREN a WINNER (2509.12980v1)

Published 16 Sep 2025 in cs.CV and cs.LG

Abstract: We identify and address a fundamental limitation of sinusoidal representation networks (SIRENs), a class of implicit neural representations. SIRENs Sitzmann et al. (2020), when not initialized appropriately, can struggle at fitting signals that fall outside their frequency support. In extreme cases, when the network's frequency support misaligns with the target spectrum, a 'spectral bottleneck' phenomenon is observed, where the model yields to a near-zero output and fails to recover even the frequency components that are within its representational capacity. To overcome this, we propose WINNER - Weight Initialization with Noise for Neural Representations. WINNER perturbs uniformly initialized weights of base SIREN with Gaussian noise - whose noise scales are adaptively determined by the spectral centroid of the target signal. Similar to random Fourier embeddings, this mitigates 'spectral bias' but without introducing additional trainable parameters. Our method achieves state-of-the-art audio fitting and significant gains in image and 3D shape fitting tasks over base SIREN. Beyond signal fitting, WINNER suggests new avenues in adaptive, target-aware initialization strategies for optimizing deep neural network training. For code and data visit cfdlabtechnion.github.io/siren_square/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com