Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Interventional Approach to Real-Time Disaster Assessment via Causal Attribution (2509.11676v1)

Published 15 Sep 2025 in cs.LG

Abstract: Traditional disaster analysis and modelling tools for assessing the severity of a disaster are predictive in nature. Based on the past observational data, these tools prescribe how the current input state (e.g., environmental conditions, situation reports) results in a severity assessment. However, these systems are not meant to be interventional in the causal sense, where the user can modify the current input state to simulate counterfactual "what-if" scenarios. In this work, we provide an alternative interventional tool that complements traditional disaster modelling tools by leveraging real-time data sources like satellite imagery, news, and social media. Our tool also helps understand the causal attribution of different factors on the estimated severity, over any given region of interest. In addition, we provide actionable recourses that would enable easier mitigation planning. Our source code is publicly available.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.