Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Repulsive Monte Carlo on the sphere for the sliced Wasserstein distance (2509.10166v1)

Published 12 Sep 2025 in stat.ML and cs.LG

Abstract: In this paper, we consider the problem of computing the integral of a function on the unit sphere, in any dimension, using Monte Carlo methods. Although the methods we present are general, our guiding thread is the sliced Wasserstein distance between two measures on $\mathbb{R}d$, which is precisely an integral on the $d$-dimensional sphere. The sliced Wasserstein distance (SW) has gained momentum in machine learning either as a proxy to the less computationally tractable Wasserstein distance, or as a distance in its own right, due in particular to its built-in alleviation of the curse of dimensionality. There has been recent numerical benchmarks of quadratures for the sliced Wasserstein, and our viewpoint differs in that we concentrate on quadratures where the nodes are repulsive, i.e. negatively dependent. Indeed, negative dependence can bring variance reduction when the quadrature is adapted to the integration task. Our first contribution is to extract and motivate quadratures from the recent literature on determinantal point processes (DPPs) and repelled point processes, as well as repulsive quadratures from the literature specific to the sliced Wasserstein distance. We then numerically benchmark these quadratures. Moreover, we analyze the variance of the UnifOrtho estimator, an orthogonal Monte Carlo estimator. Our analysis sheds light on UnifOrtho's success for the estimation of the sliced Wasserstein in large dimensions, as well as counterexamples from the literature. Our final recommendation for the computation of the sliced Wasserstein distance is to use randomized quasi-Monte Carlo in low dimensions and \emph{UnifOrtho} in large dimensions. DPP-based quadratures only shine when quasi-Monte Carlo also does, while repelled quadratures show moderate variance reduction in general, but more theoretical effort is needed to make them robust.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.