Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Boosted Training of Lightweight Early Exits for Optimizing CNN Image Classification Inference (2509.08318v1)

Published 10 Sep 2025 in cs.CV

Abstract: Real-time image classification on resource-constrained platforms demands inference methods that balance accuracy with strict latency and power budgets. Early-exit strategies address this need by attaching auxiliary classifiers to intermediate layers of convolutional neural networks (CNNs), allowing "easy" samples to terminate inference early. However, conventional training of early exits introduces a covariance shift: downstream branches are trained on full datasets, while at inference they process only the harder, non-exited samples. This mismatch limits efficiency--accuracy trade-offs in practice. We introduce the Boosted Training Scheme for Early Exits (BTS-EE), a sequential training approach that aligns branch training with inference-time data distributions. Each branch is trained and calibrated before the next, ensuring robustness under selective inference conditions. To further support embedded deployment, we propose a lightweight branch architecture based on 1D convolutions and a Class Precision Margin (CPM) calibration method that enables per-class threshold tuning for reliable exit decisions. Experiments on the CINIC-10 dataset with a ResNet18 backbone demonstrate that BTS-EE consistently outperforms non-boosted training across 64 configurations, achieving up to 45 percent reduction in computation with only 2 percent accuracy degradation. These results expand the design space for deploying CNNs in real-time image processing systems, offering practical efficiency gains for applications such as industrial inspection, embedded vision, and UAV-based monitoring.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.