Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Another Turn, Better Output? A Turn-Wise Analysis of Iterative LLM Prompting (2509.06770v1)

Published 8 Sep 2025 in cs.AI and cs.HC

Abstract: LLMs are now used in multi-turn workflows, but we still lack a clear way to measure when iteration helps and when it hurts. We present an evaluation framework for iterative refinement that spans ideation, code, and math. Our protocol runs controlled 12-turn conversations per task, utilizing a variety of prompts ranging from vague ``improve it'' feedback to targeted steering, and logs per-turn outputs. We score outcomes with domain-appropriate checks (unit tests for code; answer-equivalence plus reasoning-soundness for math; originality and feasibility for ideation) and track turn-level behavior with three families of metrics: semantic movement across turns, turn-to-turn change, and output size growth. Across models and tasks, gains are domain-dependent: they arrive early in ideas and code, but in math late turns matter when guided by elaboration. After the first few turns, vague feedback often plateaus or reverses correctness, while targeted prompts reliably shift the intended quality axis (novelty vs. feasibility in ideation; speed vs. readability in code; in math, elaboration outperforms exploration and drives late-turn gains). We also observe consistent domain patterns: ideation moves more in meaning across turns, code tends to grow in size with little semantic change, and math starts fixed but can break that path with late, elaborative iteration.Together, the framework and metrics make iteration measurable and comparable across models, and signal when to steer, stop, or switch strategies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.