MSLEF: Multi-Segment LLM Ensemble Finetuning in Recruitment (2509.06200v1)
Abstract: This paper presents MSLEF, a multi-segment ensemble framework that employs LLM fine-tuning to enhance resume parsing in recruitment automation. It integrates fine-tuned LLMs using weighted voting, with each model specializing in a specific resume segment to boost accuracy. Building on MLAR , MSLEF introduces a segment-aware architecture that leverages field-specific weighting tailored to each resume part, effectively overcoming the limitations of single-model systems by adapting to diverse formats and structures. The framework incorporates Gemini-2.5-Flash LLM as a high-level aggregator for complex sections and utilizes Gemma 9B, LLaMA 3.1 8B, and Phi-4 14B. MSLEF achieves significant improvements in Exact Match (EM), F1 score, BLEU, ROUGE, and Recruitment Similarity (RS) metrics, outperforming the best single model by up to +7% in RS. Its segment-aware design enhances generalization across varied resume layouts, making it highly adaptable to real-world hiring scenarios while ensuring precise and reliable candidate representation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.