Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MedSeqFT: Sequential Fine-tuning Foundation Models for 3D Medical Image Segmentation (2509.06096v1)

Published 7 Sep 2025 in cs.CV

Abstract: Foundation models have become a promising paradigm for advancing medical image analysis, particularly for segmentation tasks where downstream applications often emerge sequentially. Existing fine-tuning strategies, however, remain limited: parallel fine-tuning isolates tasks and fails to exploit shared knowledge, while multi-task fine-tuning requires simultaneous access to all datasets and struggles with incremental task integration. To address these challenges, we propose MedSeqFT, a sequential fine-tuning framework that progressively adapts pre-trained models to new tasks while refining their representational capacity. MedSeqFT introduces two core components: (1) Maximum Data Similarity (MDS) selection, which identifies downstream samples most representative of the original pre-training distribution to preserve general knowledge, and (2) Knowledge and Generalization Retention Fine-Tuning (K&G RFT), a LoRA-based knowledge distillation scheme that balances task-specific adaptation with the retention of pre-trained knowledge. Extensive experiments on two multi-task datasets covering ten 3D segmentation tasks demonstrate that MedSeqFT consistently outperforms state-of-the-art fine-tuning strategies, yielding substantial performance gains (e.g., an average Dice improvement of 3.0%). Furthermore, evaluations on two unseen tasks (COVID-19-20 and Kidney) verify that MedSeqFT enhances transferability, particularly for tumor segmentation. Visual analyses of loss landscapes and parameter variations further highlight the robustness of MedSeqFT. These results establish sequential fine-tuning as an effective, knowledge-retentive paradigm for adapting foundation models to evolving clinical tasks. Code will be released.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube