Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PointSlice: Accurate and Efficient Slice-Based Representation for 3D Object Detection from Point Clouds (2509.01487v1)

Published 1 Sep 2025 in cs.CV

Abstract: 3D object detection from point clouds plays a critical role in autonomous driving. Currently, the primary methods for point cloud processing are voxel-based and pillarbased approaches. Voxel-based methods offer high accuracy through fine-grained spatial segmentation but suffer from slower inference speeds. Pillar-based methods enhance inference speed but still fall short of voxel-based methods in accuracy. To address these issues, we propose a novel point cloud processing method, PointSlice, which slices point clouds along the horizontal plane and includes a dedicated detection network. The main contributions of PointSlice are: (1) A new point cloud processing technique that converts 3D point clouds into multiple sets of 2D (x-y) data slices. The model only learns 2D data distributions, treating the 3D point cloud as separate batches of 2D data, which reduces the number of model parameters and enhances inference speed; (2) The introduction of a Slice Interaction Network (SIN). To maintain vertical relationships across slices, we incorporate SIN into the 2D backbone network, which improves the model's 3D object perception capability. Extensive experiments demonstrate that PointSlice achieves high detection accuracy and inference speed. On the Waymo dataset, PointSlice is 1.13x faster and has 0.79x fewer parameters than the state-of-the-art voxel-based method (SAFDNet), with only a 1.2 mAPH accuracy reduction. On the nuScenes dataset, we achieve a state-of-the-art detection result of 66.74 mAP. On the Argoverse 2 dataset, PointSlice is 1.10x faster, with 0.66x fewer parameters and a 1.0 mAP accuracy reduction. The code will be available at https://github.com/qifeng22/PointSlice2.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.