Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bootstrap Diagnostic Tests (2509.01351v1)

Published 1 Sep 2025 in econ.EM, math.ST, and stat.TH

Abstract: Violation of the assumptions underlying classical (Gaussian) limit theory frequently leads to unreliable statistical inference. This paper shows the novel result that the bootstrap can detect such violation by means of simple and powerful tests which (a) induce no pre-testing bias, (b) can be performed using the same critical values in a broad range of applications, and (c) are consistent against deviations from asymptotic normality. By focusing on the discrepancy between the conditional distribution of a bootstrap statistic and the (limiting) Gaussian distribution which obtains under valid specification, we show how to assess whether this discrepancy is large enough to indicate specification invalidity. The method, which is computationally straightforward, only requires to measure the discrepancy between the bootstrap and the Gaussian distributions based on a sample of i.i.d. draws of the bootstrap statistic. We derive sufficient conditions for the randomness in the data to mix with the randomness in the bootstrap repetitions in a way such that (a), (b) and (c) above hold. To demonstrate the practical relevance and broad applicability of our diagnostic procedure, we discuss five scenarios where the asymptotic Gaussian approximation may fail: (i) weak instruments in instrumental variable regression; (ii) non-stationarity in autoregressive time series; (iii) parameters near or at the boundary of the parameter space; (iv) infinite variance innovations in a location model for i.i.d. data; (v) invalidity of the delta method due to (near-)rank deficiency in the implied Jacobian matrix. An illustration drawn from the empirical macroeconomic literature concludes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: