Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Survey on Open Dataset Search in the LLM Era: Retrospectives and Perspectives (2509.00728v1)

Published 31 Aug 2025 in cs.IR and cs.DB

Abstract: High-quality datasets are typically required for accomplishing data-driven tasks, such as training medical diagnosis models, predicting real-time traffic conditions, or conducting experiments to validate research hypotheses. Consequently, open dataset search, which aims to ensure the efficient and accurate fulfiLLMent of users' dataset requirements, has emerged as a critical research challenge and has attracted widespread interest. Recent studies have made notable progress in enhancing the flexibility and intelligence of open dataset search, and LLMs have demonstrated strong potential in addressing long-standing challenges in this area. Therefore, a systematic and comprehensive review of the open dataset search problem is essential, detailing the current state of research and exploring future directions. In this survey, we focus on recent advances in open dataset search beyond traditional approaches that rely on metadata and keywords. From the perspective of dataset modalities, we place particular emphasis on example-based dataset search, advanced similarity measurement techniques based on dataset content, and efficient search acceleration techniques. In addition, we emphasize the mutually beneficial relationship between LLMs and open dataset search. On the one hand, LLMs help address complex challenges in query understanding, semantic modeling, and interactive guidance within open dataset search. In turn, advances in dataset search can support LLMs by enabling more effective integration into retrieval-augmented generation (RAG) frameworks and data selection processes, thereby enhancing downstream task performance. Finally, we summarize open research problems and outline promising directions for future work. This work aims to offer a structured reference for researchers and practitioners in the field of open dataset search.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube