Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Scaling Legal AI: Benchmarking Mamba and Transformers for Statutory Classification and Case Law Retrieval (2509.00141v1)

Published 29 Aug 2025 in cs.CY, cs.AI, and cs.LG

Abstract: The rapid growth of statutory corpora and judicial decisions requires scalable legal AI systems capable of classification and retrieval over extremely long contexts. Transformer-based architectures (e.g., Longformer, DeBERTa) dominate current legal NLP benchmarks but struggle with quadratic attention costs, limiting efficiency and scalability. In this work, we present the first comprehensive benchmarking of Mamba, a state-space model (SSM) with linear-time selective mechanisms, against leading transformer models for statutory classification and case law retrieval. We evaluate models on open-source legal corpora including LexGLUE, EUR-Lex, and ILDC, covering statutory tagging, judicial outcome prediction, and case retrieval tasks. Metrics include accuracy, recall at k, mean reciprocal rank (MRR), and normalized discounted cumulative gain (nDCG), alongside throughput measured in tokens per second and maximum context length. Results show that Mamba's linear scaling enables processing of legal documents several times longer than transformers, while maintaining or surpassing retrieval and classification performance. This study introduces a new legal NLP benchmark suite for long-context modeling, along with open-source code and datasets to support reproducibility. Our findings highlight trade-offs between state-space models and transformers, providing guidance for deploying scalable legal AI in statutory analysis, judicial decision support, and policy research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube