Operating advanced scientific instruments with AI agents that learn on the job (2509.00098v1)
Abstract: Advanced scientific user facilities, such as next generation X-ray light sources and self-driving laboratories, are revolutionizing scientific discovery by automating routine tasks and enabling rapid experimentation and characterizations. However, these facilities must continuously evolve to support new experimental workflows, adapt to diverse user projects, and meet growing demands for more intricate instruments and experiments. This continuous development introduces significant operational complexity, necessitating a focus on usability, reproducibility, and intuitive human-instrument interaction. In this work, we explore the integration of agentic AI, powered by LLMs, as a transformative tool to achieve this goal. We present our approach to developing a human-in-the-loop pipeline for operating advanced instruments including an X-ray nanoprobe beamline and an autonomous robotic station dedicated to the design and characterization of materials. Specifically, we evaluate the potential of various LLMs as trainable scientific assistants for orchestrating complex, multi-task workflows, which also include multimodal data, optimizing their performance through optional human input and iterative learning. We demonstrate the ability of AI agents to bridge the gap between advanced automation and user-friendly operation, paving the way for more adaptable and intelligent scientific facilities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.