Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Memorization in Graph Neural Networks (2508.19352v1)

Published 26 Aug 2025 in cs.LG

Abstract: Deep neural networks (DNNs) have been shown to memorize their training data, yet similar analyses for graph neural networks (GNNs) remain largely under-explored. We introduce NCMemo (Node Classification Memorization), the first framework to quantify label memorization in semi-supervised node classification. We first establish an inverse relationship between memorization and graph homophily, i.e., the property that connected nodes share similar labels/features. We find that lower homophily significantly increases memorization, indicating that GNNs rely on memorization to learn less homophilic graphs. Secondly, we analyze GNN training dynamics. We find that the increased memorization in low homophily graphs is tightly coupled to the GNNs' implicit bias on using graph structure during learning. In low homophily regimes, this structure is less informative, hence inducing memorization of the node labels to minimize training loss. Finally, we show that nodes with higher label inconsistency in their feature-space neighborhood are significantly more prone to memorization. Building on our insights into the link between graph homophily and memorization, we investigate graph rewiring as a means to mitigate memorization. Our results demonstrate that this approach effectively reduces memorization without compromising model performance. Moreover, we show that it lowers the privacy risk for previously memorized data points in practice. Thus, our work not only advances understanding of GNN learning but also supports more privacy-preserving GNN deployment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.