Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rethinking Reasoning in LLMs: Neuro-Symbolic Local RetoMaton Beyond ICL and CoT (2508.19271v1)

Published 22 Aug 2025 in cs.CL and cs.AI

Abstract: Prompt-based reasoning strategies such as Chain-of-Thought (CoT) and In-Context Learning (ICL) have become widely used for eliciting reasoning capabilities in LLMs. However, these methods rely on fragile, implicit mechanisms often yielding inconsistent outputs across seeds, formats, or minor prompt variations making them fundamentally unreliable for tasks requiring stable, interpretable reasoning. In contrast, automata-based neuro-symbolic frameworks like RetoMaton offer a more structured and trustworthy alternative by grounding retrieval in symbolic memory with deterministic transitions. In this work, we extend RetoMaton by replacing its global datastore with a local, task-adaptive Weighted Finite Automaton (WFA), constructed directly from external domain corpora. This local automaton structure promotes robust, context-aware retrieval while preserving symbolic traceability and low inference overhead. Unlike prompting, which entangles context and memory in opaque ways, our approach leverages the explicit structure of WFAs to provide verifiable and modular retrieval behavior, making it better suited for domain transfer and interoperability. We evaluate this local RetoMaton variant on two pretrained LLMs LLaMA-3.2-1B and Gemma-3-1B-PT across three reasoning tasks: TriviaQA (reading comprehension), GSM8K (multi-step math), and MMLU (domain knowledge). Compared to the base model and prompting-based methods, augmenting these setups with local RetoMaton consistently improves performance while enabling transparent and reproducible retrieval dynamics. Our results highlight a promising shift toward trustworthy, symbolic reasoning in modern LLMs via lightweight, automaton-guided memory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube