Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Beyond the Black Box: Integrating Lexical and Semantic Methods in Quantitative Discourse Analysis with BERTopic (2508.19099v1)

Published 26 Aug 2025 in cs.CL

Abstract: Quantitative Discourse Analysis has seen growing adoption with the rise of LLMs and computational tools. However, reliance on black box software such as MAXQDA and NVivo risks undermining methodological transparency and alignment with research goals. This paper presents a hybrid, transparent framework for QDA that combines lexical and semantic methods to enable triangulation, reproducibility, and interpretability. Drawing from a case study in historical political discourse, we demonstrate how custom Python pipelines using NLTK, spaCy, and Sentence Transformers allow fine-grained control over preprocessing, lemmatisation, and embedding generation. We further detail our iterative BERTopic modelling process, incorporating UMAP dimensionality reduction, HDBSCAN clustering, and c-TF-IDF keyword extraction, optimised through parameter tuning and multiple runs to enhance topic coherence and coverage. By juxtaposing precise lexical searches with context-aware semantic clustering, we argue for a multi-layered approach that mitigates the limitations of either method in isolation. Our workflow underscores the importance of code-level transparency, researcher agency, and methodological triangulation in computational discourse studies. Code and supplementary materials are available via GitHub.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.