Papers
Topics
Authors
Recent
2000 character limit reached

An efficient algorithm for entropic optimal transport under martingale-type constraints (2508.17641v1)

Published 25 Aug 2025 in math.OC, cs.NA, and math.NA

Abstract: This work introduces novel computational methods for entropic optimal transport (OT) problems under martingale-type conditions. The considered problems include the discrete martingale optimal transport (MOT) problem. Moreover, as the (super-)martingale conditions are equivalent to row-wise (in-)equality constraints on the coupling matrix, our work applies to a prevalent class of OT problems with structural constraints. Inspired by the recent empirical success of Sinkhorn-type algorithms, we propose an entropic formulation for the MOT problem and introduce Sinkhorn-type algorithms with sparse Newton iterations that utilize the (approximate) sparsity of the Hessian matrix of the dual objective. As exact martingale conditions are typically infeasible, we adopt entropic regularization to find an approximate constraint-satisfied solution. We show that, in practice, the proposed algorithms enjoy both super-exponential convergence and robustness with controllable thresholds for total constraint violations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.