Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

GRADE: Generating multi-hop QA and fine-gRAined Difficulty matrix for RAG Evaluation (2508.16994v1)

Published 23 Aug 2025 in cs.CL and cs.AI

Abstract: Retrieval-Augmented Generation (RAG) systems are widely adopted in knowledge-intensive NLP tasks, but current evaluations often overlook the structural complexity and multi-step reasoning required in real-world scenarios. These benchmarks overlook key factors such as the interaction between retrieval difficulty and reasoning depth. To address this gap, we propose \textsc{GRADE}, a novel evaluation framework that models task difficulty along two orthogonal dimensions: (1) reasoning depth, defined by the number of inference steps (hops), and (2) semantic distance between the query and its supporting evidence. We construct a synthetic multi-hop QA dataset from factual news articles by extracting knowledge graphs and augmenting them through semantic clustering to recover missing links, allowing us to generate diverse and difficulty-controlled queries. Central to our framework is a 2D difficulty matrix that combines generator-side and retriever-side difficulty. Experiments across multiple domains and models show that error rates strongly correlate with our difficulty measures, validating their diagnostic utility. \textsc{GRADE} enables fine-grained analysis of RAG performance and provides a scalable foundation for evaluating and improving multi-hop reasoning in real-world applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.