Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast and Accurate RFIC Performance Prediction via Pin Level Graph Neural Networks and Probabilistic Flow (2508.16403v1)

Published 22 Aug 2025 in cs.LG

Abstract: Accurately predicting the performance of active radio frequency (RF) circuits is essential for modern wireless systems but remains challenging due to highly nonlinear, layout-sensitive behavior and the high computational cost of traditional simulation tools. Existing ML surrogates often require large datasets to generalize across various topologies or to accurately model skewed and multi-modal performance metrics. In this work, a lightweight, data-efficient, and topology-aware graph neural network (GNN) model is proposed for predicting key performance metrics of multiple topologies of active RF circuits such as low noise amplifiers (LNAs), mixers, voltage-controlled oscillators (VCOs), and PAs. To capture transistor-level symmetry and preserve fine-grained connectivity details, circuits are modeled at the device-terminal level, enabling scalable message passing while reducing data requirements. Masked autoregressive flow (MAF) output heads are incorporated to improve robustness in modeling complex target distributions. Experiments on datasets demonstrate high prediction accuracy, with symmetric mean absolute percentage error (sMAPE) and mean relative error (MRE) averaging 2.40% and 2.91%, respectively. Owing to the pin-level conversion of circuit to graph and ML architecture robust to modeling complex densities of RF metrics, the MRE is improved by 3.14x while using 2.24x fewer training samples compared to prior work, demonstrating the method's effectiveness for rapid and accurate RF circuit design automation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.