Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FALCON: An ML Framework for Fully Automated Layout-Constrained Analog Circuit Design (2505.21923v1)

Published 28 May 2025 in cs.LG, cs.AI, cs.AR, and cs.CE

Abstract: Designing analog circuits from performance specifications is a complex, multi-stage process encompassing topology selection, parameter inference, and layout feasibility. We introduce FALCON, a unified machine learning framework that enables fully automated, specification-driven analog circuit synthesis through topology selection and layout-constrained optimization. Given a target performance, FALCON first selects an appropriate circuit topology using a performance-driven classifier guided by human design heuristics. Next, it employs a custom, edge-centric graph neural network trained to map circuit topology and parameters to performance, enabling gradient-based parameter inference through the learned forward model. This inference is guided by a differentiable layout cost, derived from analytical equations capturing parasitic and frequency-dependent effects, and constrained by design rules. We train and evaluate FALCON on a large-scale custom dataset of 1M analog mm-wave circuits, generated and simulated using Cadence Spectre across 20 expert-designed topologies. Through this evaluation, FALCON demonstrates >99\% accuracy in topology inference, <10\% relative error in performance prediction, and efficient layout-aware design that completes in under 1 second per instance. Together, these results position FALCON as a practical and extensible foundation model for end-to-end analog circuit design automation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.