Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 37 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Multimodal-Multitask Framework with Cross-modal Relation and Hierarchical Interactive Attention for Semantic Comprehension (2508.16300v1)

Published 22 Aug 2025 in cs.CV and cs.AI

Abstract: A major challenge in multimodal learning is the presence of noise within individual modalities. This noise inherently affects the resulting multimodal representations, especially when these representations are obtained through explicit interactions between different modalities. Moreover, the multimodal fusion techniques while aiming to achieve a strong joint representation, can neglect valuable discriminative information within the individual modalities. To this end, we propose a Multimodal-Multitask framework with crOss-modal Relation and hIErarchical iNteractive aTtention (MM-ORIENT) that is effective for multiple tasks. The proposed approach acquires multimodal representations cross-modally without explicit interaction between different modalities, reducing the noise effect at the latent stage. To achieve this, we propose cross-modal relation graphs that reconstruct monomodal features to acquire multimodal representations. The features are reconstructed based on the node neighborhood, where the neighborhood is decided by the features of a different modality. We also propose Hierarchical Interactive Monomadal Attention (HIMA) to focus on pertinent information within a modality. While cross-modal relation graphs help comprehend high-order relationships between two modalities, HIMA helps in multitasking by learning discriminative features of individual modalities before late-fusing them. Finally, extensive experimental evaluation on three datasets demonstrates that the proposed approach effectively comprehends multimodal content for multiple tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.