Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 37 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MapKD: Unlocking Prior Knowledge with Cross-Modal Distillation for Efficient Online HD Map Construction (2508.15653v1)

Published 21 Aug 2025 in cs.CV

Abstract: Online HD map construction is a fundamental task in autonomous driving systems, aiming to acquire semantic information of map elements around the ego vehicle based on real-time sensor inputs. Recently, several approaches have achieved promising results by incorporating offline priors such as SD maps and HD maps or by fusing multi-modal data. However, these methods depend on stale offline maps and multi-modal sensor suites, resulting in avoidable computational overhead at inference. To address these limitations, we employ a knowledge distillation strategy to transfer knowledge from multimodal models with prior knowledge to an efficient, low-cost, and vision-centric student model. Specifically, we propose MapKD, a novel multi-level cross-modal knowledge distillation framework with an innovative Teacher-Coach-Student (TCS) paradigm. This framework consists of: (1) a camera-LiDAR fusion model with SD/HD map priors serving as the teacher; (2) a vision-centric coach model with prior knowledge and simulated LiDAR to bridge the cross-modal knowledge transfer gap; and (3) a lightweight vision-based student model. Additionally, we introduce two targeted knowledge distillation strategies: Token-Guided 2D Patch Distillation (TGPD) for bird's eye view feature alignment and Masked Semantic Response Distillation (MSRD) for semantic learning guidance. Extensive experiments on the challenging nuScenes dataset demonstrate that MapKD improves the student model by +6.68 mIoU and +10.94 mAP while simultaneously accelerating inference speed. The code is available at:https://github.com/2004yan/MapKD2026.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub