Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved Generalized Planning with LLMs through Strategy Refinement and Reflection (2508.13876v1)

Published 19 Aug 2025 in cs.AI and cs.CL

Abstract: LLMs have recently been used to generate Python programs representing generalized plans in PDDL planning, i.e., plans that generalize across the tasks of a given PDDL domain. Previous work proposed a framework consisting of three steps: the LLM first generates a summary and then a strategy for the domain, both in natural language, and then implements that strategy as a Python program, that gets debugged on example planning tasks. In that work, only one strategy is generated and passed directly to the program generation. If the strategy is incorrect, its implementation will therefore result in an incorrect generalized plan. Here, we introduce an approach that generates the strategy in the form of pseudocode and enables automatic debugging of the pseudocode, hence allowing us to identify and fix errors prior to the generation of the generalized plan itself. Additionally, we extend the Python debugging phase with a reflection step prompting the LLM to pinpoint the reason for the observed plan failure. Finally, we take inspiration from LLM code generation to produce several program variants and pick the best one. Running experiments on 17 benchmark domains, we show that these extensions substantially improve (and never deteriorate) the quality of the generalized plans. In 12 of the domains, our best Python programs solve all tasks that can be generated with the respective instance generator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com