Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

LoRAtorio: An intrinsic approach to LoRA Skill Composition (2508.11624v1)

Published 15 Aug 2025 in cs.CV

Abstract: Low-Rank Adaptation (LoRA) has become a widely adopted technique in text-to-image diffusion models, enabling the personalisation of visual concepts such as characters, styles, and objects. However, existing approaches struggle to effectively compose multiple LoRA adapters, particularly in open-ended settings where the number and nature of required skills are not known in advance. In this work, we present LoRAtorio, a novel train-free framework for multi-LoRA composition that leverages intrinsic model behaviour. Our method is motivated by two key observations: (1) LoRA adapters trained on narrow domains produce denoised outputs that diverge from the base model, and (2) when operating out-of-distribution, LoRA outputs show behaviour closer to the base model than when conditioned in distribution. The balance between these two observations allows for exceptional performance in the single LoRA scenario, which nevertheless deteriorates when multiple LoRAs are loaded. Our method operates in the latent space by dividing it into spatial patches and computing cosine similarity between each patch's predicted noise and that of the base model. These similarities are used to construct a spatially-aware weight matrix, which guides a weighted aggregation of LoRA outputs. To address domain drift, we further propose a modification to classifier-free guidance that incorporates the base model's unconditional score into the composition. We extend this formulation to a dynamic module selection setting, enabling inference-time selection of relevant LoRA adapters from a large pool. LoRAtorio achieves state-of-the-art performance, showing up to a 1.3% improvement in ClipScore and a 72.43% win rate in GPT-4V pairwise evaluations, and generalises effectively to multiple latent diffusion models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.