Papers
Topics
Authors
Recent
2000 character limit reached

Can Multi-modal (reasoning) LLMs detect document manipulation?

Published 14 Aug 2025 in cs.CV and cs.CL | (2508.11021v1)

Abstract: Document fraud poses a significant threat to industries reliant on secure and verifiable documentation, necessitating robust detection mechanisms. This study investigates the efficacy of state-of-the-art multi-modal LLMs-including OpenAI O1, OpenAI 4o, Gemini Flash (thinking), Deepseek Janus, Grok, Llama 3.2 and 4, Qwen 2 and 2.5 VL, Mistral Pixtral, and Claude 3.5 and 3.7 Sonnet-in detecting fraudulent documents. We benchmark these models against each other and prior work on document fraud detection techniques using a standard dataset with real transactional documents. Through prompt optimization and detailed analysis of the models' reasoning processes, we evaluate their ability to identify subtle indicators of fraud, such as tampered text, misaligned formatting, and inconsistent transactional sums. Our results reveal that top-performing multi-modal LLMs demonstrate superior zero-shot generalization, outperforming conventional methods on out-of-distribution datasets, while several vision LLMs exhibit inconsistent or subpar performance. Notably, model size and advanced reasoning capabilities show limited correlation with detection accuracy, suggesting task-specific fine-tuning is critical. This study underscores the potential of multi-modal LLMs in enhancing document fraud detection systems and provides a foundation for future research into interpretable and scalable fraud mitigation strategies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.