Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Large Language Models Show Signs of Alignment with Human Neurocognition During Abstract Reasoning (2508.10057v1)

Published 12 Aug 2025 in q-bio.NC, cs.AI, and cs.CL

Abstract: This study investigates whether LLMs mirror human neurocognition during abstract reasoning. We compared the performance and neural representations of human participants with those of eight open-source LLMs on an abstract-pattern-completion task. We leveraged pattern type differences in task performance and in fixation-related potentials (FRPs) as recorded by electroencephalography (EEG) during the task. Our findings indicate that only the largest tested LLMs (~70 billion parameters) achieve human-comparable accuracy, with Qwen-2.5-72B and DeepSeek-R1-70B also showing similarities with the human pattern-specific difficulty profile. Critically, every LLM tested forms representations that distinctly cluster the abstract pattern categories within their intermediate layers, although the strength of this clustering scales with their performance on the task. Moderate positive correlations were observed between the representational geometries of task-optimal LLM layers and human frontal FRPs. These results consistently diverged from comparisons with other EEG measures (response-locked ERPs and resting EEG), suggesting a potential shared representational space for abstract patterns. This indicates that LLMs might mirror human brain mechanisms in abstract reasoning, offering preliminary evidence of shared principles between biological and artificial intelligence.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com