Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Intention-Aware Diffusion Model for Pedestrian Trajectory Prediction (2508.07146v1)

Published 10 Aug 2025 in cs.CV and cs.AI

Abstract: Predicting pedestrian motion trajectories is critical for the path planning and motion control of autonomous vehicles. Recent diffusion-based models have shown promising results in capturing the inherent stochasticity of pedestrian behavior for trajectory prediction. However, the absence of explicit semantic modelling of pedestrian intent in many diffusion-based methods may result in misinterpreted behaviors and reduced prediction accuracy. To address the above challenges, we propose a diffusion-based pedestrian trajectory prediction framework that incorporates both short-term and long-term motion intentions. Short-term intent is modelled using a residual polar representation, which decouples direction and magnitude to capture fine-grained local motion patterns. Long-term intent is estimated through a learnable, token-based endpoint predictor that generates multiple candidate goals with associated probabilities, enabling multimodal and context-aware intention modelling. Furthermore, we enhance the diffusion process by incorporating adaptive guidance and a residual noise predictor that dynamically refines denoising accuracy. The proposed framework is evaluated on the widely used ETH, UCY, and SDD benchmarks, demonstrating competitive results against state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.