Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-term Pedestrian Trajectory Prediction using Mutable Intention Filter and Warp LSTM (2007.00113v3)

Published 30 Jun 2020 in cs.RO and cs.CV

Abstract: Trajectory prediction is one of the key capabilities for robots to safely navigate and interact with pedestrians. Critical insights from human intention and behavioral patterns need to be integrated to effectively forecast long-term pedestrian behavior. Thus, we propose a framework incorporating a Mutable Intention Filter and a Warp LSTM (MIF-WLSTM) to simultaneously estimate human intention and perform trajectory prediction. The Mutable Intention Filter is inspired by particle filtering and genetic algorithms, where particles represent intention hypotheses that can be mutated throughout the pedestrian motion. Instead of predicting sequential displacement over time, our Warp LSTM learns to generate offsets on a full trajectory predicted by a nominal intention-aware linear model, which considers the intention hypotheses during filtering process. Through experiments on a publicly available dataset, we show that our method outperforms baseline approaches and demonstrate the robust performance of our method under abnormal intention-changing scenarios. Code is available at https://github.com/tedhuang96/mifwlstm.

Citations (28)

Summary

We haven't generated a summary for this paper yet.