Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sentiment-Aware Stock Price Prediction with Transformer and LLM-Generated Formulaic Alpha (2508.04975v1)

Published 7 Aug 2025 in cs.CE

Abstract: Traditionally, traders and quantitative analysts address alpha decay by manually crafting formulaic alphas, mathematical expressions that identify patterns or signals in financial data, through domain expertise and trial-and-error. This process is often time-consuming and difficult to scale. With recent advances in LLMs, it is now possible to automate the generation of such alphas by leveraging the reasoning capabilities of LLMs. This paper introduces a novel framework that integrates a prompt-based LLM with a Transformer model for stock price prediction. The LLM first generates diverse and adaptive alphas using structured inputs such as historical stock features (Close, Open, High, Low, Volume), technical indicators, sentiment scores of both target and related companies. These alphas, instead of being used directly for trading, are treated as high-level features that capture complex dependencies within the financial data. To evaluate the effectiveness of these LLM-generated formulaic alphas, the alpha features are then fed into prediction models such as Transformer, LSTM, TCN, SVR, and Random Forest to forecast future stock prices. Experimental results demonstrate that the LLM-generated alphas significantly improve predictive accuracy. Moreover, the accompanying natural language reasoning provided by the LLM enhances the interpretability and transparency of the predictions, supporting more informed financial decision-making.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.