Constraining the outputs of ReLU neural networks (2508.03867v1)
Abstract: We introduce a class of algebraic varieties naturally associated with ReLU neural networks, arising from the piecewise linear structure of their outputs across activation regions in input space, and the piecewise multilinear structure in parameter space. By analyzing the rank constraints on the network outputs within each activation region, we derive polynomial equations that characterize the functions representable by the network. We further investigate conditions under which these varieties attain their expected dimension, providing insight into the expressive and structural properties of ReLU networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.