Papers
Topics
Authors
Recent
2000 character limit reached

An em algorithm for quantum Boltzmann machines (2507.21569v1)

Published 29 Jul 2025 in quant-ph and cs.LG

Abstract: We develop a quantum version of the em algorithm for training quantum Boltzmann machines. The em algorithm is an information-geometric extension of the well-known expectation-maximization (EM) algorithm, offering a structured alternative to gradient-based methods with potential advantages in stability and convergence. We implement the algorithm on a semi-quantum restricted Boltzmann machine, where quantum effects are confined to the hidden layer. This structure enables analytical update rules while preserving quantum expressivity. Numerical experiments on benchmark datasets show that the proposed method achieves stable learning and outperforms gradient-based training in several cases. These results demonstrate the potential of information-geometric optimization for quantum machine learning, particularly in settings where standard methods struggle due to non-commutativity or vanishing gradients.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv