Natural gradient and parameter estimation for quantum Boltzmann machines (2410.24058v1)
Abstract: Thermal states play a fundamental role in various areas of physics, and they are becoming increasingly important in quantum information science, with applications related to semi-definite programming, quantum Boltzmann machine learning, Hamiltonian learning, and the related task of estimating the parameters of a Hamiltonian. Here we establish formulas underlying the basic geometry of parameterized thermal states, and we delineate quantum algorithms for estimating the values of these formulas. More specifically, we prove formulas for the Fisher--Bures and Kubo--Mori information matrices of parameterized thermal states, and our quantum algorithms for estimating their matrix elements involve a combination of classical sampling, Hamiltonian simulation, and the Hadamard test. These results have applications in developing a natural gradient descent algorithm for quantum Boltzmann machine learning, which takes into account the geometry of thermal states, and in establishing fundamental limitations on the ability to estimate the parameters of a Hamiltonian, when given access to thermal-state samples. For the latter task, and for the special case of estimating a single parameter, we sketch an algorithm that realizes a measurement that is asymptotically optimal for the estimation task. We finally stress that the natural gradient descent algorithm developed here can be used for any machine learning problem that employs the quantum Boltzmann machine ansatz.
- M. A. Continentino, Key Methods and Concepts in Condensed Matter Physics, 2053-2563 (IOP Publishing, 2021).
- P. Deglmann, A. Schäfer, and C. Lennartz, Application of quantum calculations in the chemical industry—an overview, International Journal of Quantum Chemistry 115, 107 (2015).
- A. M. Alhambra, Quantum many-body systems in thermal equilibrium, PRX Quantum 4, 040201 (2023).
- E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957a).
- E. T. Jaynes, Information theory and statistical mechanics. II, Physical Review 108, 171 (1957b).
- F. G. S. L. Brandão and K. M. Svore, Quantum speed-ups for solving semidefinite programs, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE Computer Society, 2017) pp. 415–426.
- M. Kieferová and N. Wiebe, Tomography and generative training with quantum Boltzmann machines, Physical Review A 96, 062327 (2017).
- L. Coopmans and M. Benedetti, On the sample complexity of quantum Boltzmann machine learning, Communications Physics 7, 274 (2024).
- C.-F. Chen, M. J. Kastoryano, and A. Gilyén, An efficient and exact noncommutative quantum Gibbs sampler (2023b), arXiv:2311.09207 [quant-ph] .
- T. Bergamaschi, C.-F. Chen, and Y. Liu, Quantum computational advantage with constant-temperature Gibbs sampling (2024), arXiv:2404.14639 [quant-ph] .
- J. Rajakumar and J. D. Watson, Gibbs sampling gives quantum advantage at constant temperatures with O(1)𝑂1O(1)italic_O ( 1 )-local Hamiltonians (2024), arXiv:2408.01516 [quant-ph] .
- C. Rouzé, D. S. Franca, and Á. M. Alhambra, Efficient thermalization and universal quantum computing with quantum Gibbs samplers (2024), arXiv:2403.12691 [quant-ph] .
- M. Jarzyna and J. Kolodynski, Geometric approach to quantum statistical inference, IEEE Journal on Selected Areas in Information Theory 1, 367 (2020).
- S.-I. Amari, Natural gradient works efficiently in learning, Neural Computation 10, 251 (1998).
- B. Neyshabur, R. R. Salakhutdinov, and N. Srebro, Path-SGD: Path-normalized optimization in deep neural networks, Advances in Neural Information Processing Systems 28 (2015).
- C. O. Marrero, M. Kieferová, and N. Wiebe, Entanglement-induced barren plateaus, PRX Quantum 2, 040316 (2021).
- T. Haug, K. Bharti, and M. Kim, Capacity and quantum geometry of parametrized quantum circuits, PRX Quantum 2, 040309 (2021).
- I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2006).
- J. S. Sidhu and P. Kok, Geometric perspective on quantum parameter estimation, AVS Quantum Science 2, 014701 (2020).
- J. J. Meyer, Fisher information in noisy intermediate-scale quantum applications, Quantum 5, 539 (2021).
- C. Helstrom, The minimum variance of estimates in quantum signal detection, IEEE Transactions on Information Theory 14, 234 (1968).
- V. Katariya and M. M. Wilde, Geometric distinguishability measures limit quantum channel estimation and discrimination, Quantum Information Processing 20, 78 (2021).
- D. Bures, An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite W𝑊Witalic_W*-algebras, Transactions of the American Mathematical Society 135, 199 (1969).
- A. Uhlmann, The “transition probability” in the state space of a *-algebra, Reports on Mathematical Physics 9, 273 (1976).
- H. Umegaki, Conditional expectation in an operator algebra, IV (entropy and information), Kodai Mathematical Journal 14, 59 (1962).
- G. Lindblad, Completely positive maps and entropy inequalities, Communications in Mathematical Physics 40, 147 (1975).
- F. Hiai and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Communications in Mathematical Physics 143, 99 (1991).
- H. Nagaoka and T. Ogawa, Strong converse and Stein’s lemma in quantum hypothesis testing, IEEE Transactions on Information Theory 46, 2428 (2000).
- M. B. Hastings, Quantum belief propagation: An algorithm for thermal quantum systems, Physical Review B 76, 201102 (2007).
- I. H. Kim, Perturbative analysis of topological entanglement entropy from conditional independence, Physical Review B 86, 245116 (2012).
- S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
- G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, Quantum 3, 163 (2019).
- S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Physical Review Letters 72, 3439 (1994).
- NISO, Credit – contributor roles taxonomy, https://credit.niso.org/, Accessed 2024-10-28.