Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algebro-geometric integration of the Boussinesq hierarchy (2507.19179v1)

Published 25 Jul 2025 in nlin.SI, math-ph, and math.MP

Abstract: We construct an integrable hierarchy of the Boussinesq equation using the Lie-algebraic approach of Holod-Flashka-Newell-Ratiu. We show that finite-gap hamiltonian systems of the hierarchy arise on coadjoint orbits in the loop algebra of $\mathfrak{sl}(3)$, and possess spectral curves from the family of $(3,3N\,{+}\,1)$-curves, $N\,{\in}\, \Natural$. Separation of variables leads to the Jacobi inversion problem on the mentioned curves, which is solved in terms of the corresponding multiply periodic functions. An exact finite-gap solution of the Boussinesq equation is obtained explicitly, and a conjecture on the reality conditions is made. The obtained solutions are computed for several spectral curves, and illustrated graphically.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: