Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

AutoMAT: A Hierarchical Framework for Autonomous Alloy Discovery (2507.16005v1)

Published 21 Jul 2025 in cond-mat.mtrl-sci, cs.AI, and cs.LG

Abstract: Alloy discovery is central to advancing modern industry but remains hindered by the vastness of compositional design space and the costly validation. Here, we present AutoMAT, a hierarchical and autonomous framework grounded in and validated by experiments, which integrates LLMs, automated CALPHAD-based simulations, and AI-driven search to accelerate alloy design. Spanning the entire pipeline from ideation to validation, AutoMAT achieves high efficiency, accuracy, and interpretability without the need for manually curated large datasets. In a case study targeting a lightweight, high-strength alloy, AutoMAT identifies a titanium alloy with 8.1% lower density and comparable yield strength relative to the state-of-the-art reference, achieving the highest specific strength among all comparisons. In a second case targeting high-yield-strength high-entropy alloys, AutoMAT achieves a 28.2% improvement in yield strength over the base alloy. In both cases, AutoMAT reduces the discovery timeline from years to weeks, illustrating its potential as a scalable and versatile platform for next-generation alloy design.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.