Linear Relational Decoding of Morphology in Language Models (2507.14640v1)
Abstract: A two-part affine approximation has been found to be a good approximation for transformer computations over certain subject object relations. Adapting the Bigger Analogy Test Set, we show that the linear transformation Ws, where s is a middle layer representation of a subject token and W is derived from model derivatives, is also able to accurately reproduce final object states for many relations. This linear technique is able to achieve 90% faithfulness on morphological relations, and we show similar findings multi-lingually and across models. Our findings indicate that some conceptual relationships in LLMs, such as morphology, are readily interpretable from latent space, and are sparsely encoded by cross-layer linear transformations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.