Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Life Finds A Way: Emergence of Cooperative Structures in Adaptive Threshold Networks (2507.13253v1)

Published 17 Jul 2025 in q-bio.PE and cs.SI

Abstract: There has been a long debate on how new levels of organization have evolved. It might seem unlikely, as cooperation must prevail over competition. One well-studied example is the emergence of autocatalytic sets, which seem to be a prerequisite for the evolution of life. Using a simple model, we investigate how varying bias toward cooperation versus antagonism shapes network dynamics, revealing that higher-order organization emerges even amid pervasive antagonistic interactions. In general, we observe that a quantitative increase in the number of elements in a system leads to a qualitative transition. We present a random threshold-directed network model that integrates node-specific traits with dynamic edge formation and node removal, simulating arbitrary levels of cooperation and competition. In our framework, intrinsic node values determine directed links through various threshold rules. Our model generates a multi-digraph with signed edges (reflecting support/antagonism, labeled help''/harm''), which ultimately yields two parallel yet interdependent threshold graphs. Incorporating temporal growth and node turnover in our approach allows exploration of the evolution, adaptation, and potential collapse of communities and reveals phase transitions in both connectivity and resilience. Our findings extend classical random threshold and Erd\H{o}s-R\'enyi models, offering new insights into adaptive systems in biological and economic contexts, with emphasis on the application to Collective Affordance Sets. This framework should also be useful for making predictions that will be tested by ongoing experiments of microbial communities in soil.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 0 likes.

Reddit Logo Streamline Icon: https://streamlinehq.com