Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Am I on the Right Track? What Can Predicted Query Performance Tell Us about the Search Behaviour of Agentic RAG (2507.10411v1)

Published 14 Jul 2025 in cs.IR

Abstract: Agentic Retrieval-Augmented Generation (RAG) is a new paradigm where the reasoning model decides when to invoke a retriever (as a "tool") when answering a question. This paradigm, exemplified by recent research works such as Search-R1, enables the model to decide when to search and obtain external information. However, the queries generated by such Agentic RAG models and the role of the retriever in obtaining high-quality answers remain understudied. To this end, this initial study examines the applicability of query performance prediction (QPP) within the recent Agentic RAG models Search-R1 and R1-Searcher. We find that applying effective retrievers can achieve higher answer quality within a shorter reasoning process. Moreover, the QPP estimates of the generated queries, used as an approximation of their retrieval quality, are positively correlated with the quality of the final answer. Ultimately, our work is a step towards adaptive retrieval within Agentic RAG, where QPP is used to inform the model if the retrieved results are likely to be useful.

Summary

We haven't generated a summary for this paper yet.