Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

CNeuroMod-THINGS, a densely-sampled fMRI dataset for visual neuroscience (2507.09024v1)

Published 11 Jul 2025 in q-bio.NC and cs.CV

Abstract: Data-hungry neuro-AI modelling requires ever larger neuroimaging datasets. CNeuroMod-THINGS meets this need by capturing neural representations for a wide set of semantic concepts using well-characterized stimuli in a new densely-sampled, large-scale fMRI dataset. Importantly, CNeuroMod-THINGS exploits synergies between two existing projects: the THINGS initiative (THINGS) and the Courtois Project on Neural Modelling (CNeuroMod). THINGS has developed a common set of thoroughly annotated images broadly sampling natural and man-made objects which is used to acquire a growing collection of large-scale multimodal neural responses. Meanwhile, CNeuroMod is acquiring hundreds of hours of fMRI data from a core set of participants during controlled and naturalistic tasks, including visual tasks like movie watching and videogame playing. For CNeuroMod-THINGS, four CNeuroMod participants each completed 33-36 sessions of a continuous recognition paradigm using approximately 4000 images from the THINGS stimulus set spanning 720 categories. We report behavioural and neuroimaging metrics that showcase the quality of the data. By bridging together large existing resources, CNeuroMod-THINGS expands our capacity to model broad slices of the human visual experience.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com