Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KG-Attention: Knowledge Graph-Guided Attention at Test-Time via Bidirectional Information Aggregation (2507.08704v1)

Published 11 Jul 2025 in cs.CL and cs.AI

Abstract: Knowledge graphs (KGs) play a critical role in enhancing LLMs by introducing structured and grounded knowledge into the learning process. However, most existing KG-enhanced approaches rely on parameter-intensive fine-tuning, which risks catastrophic forgetting and degrades the pretrained model's generalization. Moreover, they exhibit limited adaptability to real-time knowledge updates due to their static integration frameworks. To address these issues, we introduce the first test-time KG-augmented framework for LLMs, built around a dedicated knowledge graph-guided attention (KGA) module that enables dynamic knowledge fusion without any parameter updates. The proposed KGA module augments the standard self-attention mechanism with two synergistic pathways: outward and inward aggregation. Specifically, the outward pathway dynamically integrates external knowledge into input representations via input-driven KG fusion. This inward aggregation complements the outward pathway by refining input representations through KG-guided filtering, suppressing task-irrelevant signals and amplifying knowledge-relevant patterns. Importantly, while the outward pathway handles knowledge fusion, the inward path selects the most relevant triples and feeds them back into the fusion process, forming a closed-loop enhancement mechanism. By synergistically combining these two pathways, the proposed method supports real-time knowledge fusion exclusively at test-time, without any parameter modification. Extensive experiments on five benchmarks verify the comparable knowledge fusion performance of KGA.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.