Beyond Scale: Small Language Models are Comparable to GPT-4 in Mental Health Understanding (2507.08031v1)
Abstract: The emergence of Small LLMs (SLMs) as privacy-preserving alternatives for sensitive applications raises a fundamental question about their inherent understanding capabilities compared to LLMs. This paper investigates the mental health understanding capabilities of current SLMs through systematic evaluation across diverse classification tasks. Employing zero-shot and few-shot learning paradigms, we benchmark their performance against established LLM baselines to elucidate their relative strengths and limitations in this critical domain. We assess five state-of-the-art SLMs (Phi-3, Phi-3.5, Qwen2.5, Llama-3.2, Gemma2) against three LLMs (GPT-4, FLAN-T5-XXL, Alpaca-7B) on six mental health understanding tasks. Our findings reveal that SLMs achieve mean performance within 2\% of LLMs on binary classification tasks (F1 scores of 0.64 vs 0.66 in zero-shot settings), demonstrating notable competence despite orders of magnitude fewer parameters. Both model categories experience similar degradation on multi-class severity tasks (a drop of over 30\%), suggesting that nuanced clinical understanding challenges transcend model scale. Few-shot prompting provides substantial improvements for SLMs (up to 14.6\%), while LLM gains are more variable. Our work highlights the potential of SLMs in mental health understanding, showing they can be effective privacy-preserving tools for analyzing sensitive online text data. In particular, their ability to quickly adapt and specialize with minimal data through few-shot learning positions them as promising candidates for scalable mental health screening tools.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.