SecureSpeech: Prompt-based Speaker and Content Protection (2507.07799v1)
Abstract: Given the increasing privacy concerns from identity theft and the re-identification of speakers through content in the speech field, this paper proposes a prompt-based speech generation pipeline that ensures dual anonymization of both speaker identity and spoken content. This is addressed through 1) generating a speaker identity unlinkable to the source speaker, controlled by descriptors, and 2) replacing sensitive content within the original text using a name entity recognition model and a LLM. The pipeline utilizes the anonymized speaker identity and text to generate high-fidelity, privacy-friendly speech via a text-to-speech synthesis model. Experimental results demonstrate an achievement of significant privacy protection while maintaining a decent level of content retention and audio quality. This paper also investigates the impact of varying speaker descriptions on the utility and privacy of generated speech to determine potential biases.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.