Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalized and Unified Equivalences between Hardness and Pseudoentropy (2507.05972v1)

Published 8 Jul 2025 in cs.CC and cs.LG

Abstract: Pseudoentropy characterizations provide a quantitatively precise demonstration of the close relationship between computational hardness and computational randomness. We prove a unified pseudoentropy characterization that generalizes and strengthens previous results for both uniform and non-uniform models of computation. Our characterization holds for a general family of entropy notions that encompasses the common notions of Shannon entropy and min entropy as special cases. Moreover, we show that the characterizations for different entropy notions can be simultaneously achieved by a single, universal function that simultaneously witnesses computational hardness and computational randomness. A key technical insight of our work is that the notion of weight-restricted calibration from the recent literature on algorithm fairness, along with standard computational indistinguishability (known as multiaccuracy in the fairness literature), suffices for proving pseudoentropy characterizations for general entropy notions. This demonstrates the power of weight-restricted calibration to enhance the classic Complexity-Theoretic Regularity Lemma (Trevisan, Tulsiani, and Vadhan, 2009) and Leakage Simulation Lemma (Jetchev and Pietrzak, 2014) and allows us to achieve an exponential improvement in the complexity dependency on the alphabet size compared to the pseudoentropy characterizations by Casacuberta, Dwork, and Vadhan (2024) based on the much stronger notion of multicalibration. We show that the exponential dependency on the alphabet size is inevitable for multicalibration as well as for the weaker notion of calibrated multiaccuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: