Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Latent Motion Profiling for Annotation-free Cardiac Phase Detection in Adult and Fetal Echocardiography Videos (2507.05154v1)

Published 7 Jul 2025 in eess.IV and cs.CV

Abstract: The identification of cardiac phase is an essential step for analysis and diagnosis of cardiac function. Automatic methods, especially data-driven methods for cardiac phase detection, typically require extensive annotations, which is time-consuming and labor-intensive. In this paper, we present an unsupervised framework for end-diastole (ED) and end-systole (ES) detection through self-supervised learning of latent cardiac motion trajectories from 4-chamber-view echocardiography videos. Our method eliminates the need for manual annotations, including ED and ES indices, segmentation, or volumetric measurements, by training a reconstruction model to encode interpretable spatiotemporal motion patterns. Evaluated on the EchoNet-Dynamic benchmark, the approach achieves mean absolute error (MAE) of 3 frames (58.3 ms) for ED and 2 frames (38.8 ms) for ES detection, matching state-of-the-art supervised methods. Extended to fetal echocardiography, the model demonstrates robust performance with MAE 1.46 frames (20.7 ms) for ED and 1.74 frames (25.3 ms) for ES, despite the fact that the fetal heart model is built using non-standardized heart views due to fetal heart positioning variability. Our results demonstrate the potential of the proposed latent motion trajectory strategy for cardiac phase detection in adult and fetal echocardiography. This work advances unsupervised cardiac motion analysis, offering a scalable solution for clinical populations lacking annotated data. Code will be released at https://github.com/YingyuYyy/CardiacPhase.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.