Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
127 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

A note on the unique properties of the Kullback--Leibler divergence for sampling via gradient flows (2507.04330v1)

Published 6 Jul 2025 in stat.ME, cs.LG, math.ST, stat.CO, and stat.TH

Abstract: We consider the problem of sampling from a probability distribution $\pi$. It is well known that this can be written as an optimisation problem over the space of probability distribution in which we aim to minimise a divergence from $\pi$. and The optimisation problem is normally solved through gradient flows in the space of probability distribution with an appropriate metric. We show that the Kullback--Leibler divergence is the only divergence in the family of Bregman divergences whose gradient flow w.r.t. many popular metrics does not require knowledge of the normalising constant of $\pi$.

Summary

We haven't generated a summary for this paper yet.