Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

ATSTrack: Enhancing Visual-Language Tracking by Aligning Temporal and Spatial Scales (2507.00454v1)

Published 1 Jul 2025 in cs.CV and cs.AI

Abstract: A main challenge of Visual-Language Tracking (VLT) is the misalignment between visual inputs and language descriptions caused by target movement. Previous trackers have explored many effective feature modification methods to preserve more aligned features. However, an important yet unexplored factor ultimately hinders their capability, which is the inherent differences in the temporal and spatial scale of information between visual and language inputs. To address this issue, we propose a novel visual-language tracker that enhances the effect of feature modification by \textbf{A}ligning \textbf{T}emporal and \textbf{S}patial scale of different input components, named as \textbf{ATSTrack}. Specifically, we decompose each language description into phrases with different attributes based on their temporal and spatial correspondence with visual inputs, and modify their features in a fine-grained manner. Moreover, we introduce a Visual-Language token that comprises modified linguistic information from the previous frame to guide the model to extract visual features that are more relevant to language description, thereby reducing the impact caused by the differences in spatial scale. Experimental results show that our proposed ATSTrack achieves performance comparable to existing methods. Our code will be released.

Summary

We haven't generated a summary for this paper yet.