Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Scalable and Cost-Efficient de Novo Template-Based Molecular Generation (2506.19865v1)

Published 10 Jun 2025 in q-bio.BM, cs.AI, and cs.LG

Abstract: Template-based molecular generation offers a promising avenue for drug design by ensuring generated compounds are synthetically accessible through predefined reaction templates and building blocks. In this work, we tackle three core challenges in template-based GFlowNets: (1) minimizing synthesis cost, (2) scaling to large building block libraries, and (3) effectively utilizing small fragment sets. We propose \textbf{Recursive Cost Guidance}, a backward policy framework that employs auxiliary machine learning models to approximate synthesis cost and viability. This guidance steers generation toward low-cost synthesis pathways, significantly enhancing cost-efficiency, molecular diversity, and quality, especially when paired with an \textbf{Exploitation Penalty} that balances the trade-off between exploration and exploitation. To enhance performance in smaller building block libraries, we develop a \textbf{Dynamic Library} mechanism that reuses intermediate high-reward states to construct full synthesis trees. Our approach establishes state-of-the-art results in template-based molecular generation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com