Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Non-equilibrium Annealed Adjoint Sampler (2506.18165v2)

Published 22 Jun 2025 in cs.LG and cs.AI

Abstract: Recently, there has been significant progress in learning-based diffusion samplers, which aim to sample from a given unnormalized density. These methods typically follow one of two paradigms: (i) formulating sampling as an unbiased stochastic optimal control (SOC) problem using a canonical reference process, or (ii) refining annealed path measures through importance-weighted sampling. Although annealing approaches have advantages in guiding samples toward high-density regions, reliance on importance sampling leads to high variance and limited scalability in practice. In this paper, we introduce the \textbf{Non-equilibrium Annealed Adjoint Sampler (NAAS)}, a novel SOC-based diffusion sampler that leverages annealed reference dynamics without resorting to importance sampling. NAAS employs a lean adjoint system inspired by adjoint matching, enabling efficient and scalable training. We demonstrate the effectiveness of our approach across a range of tasks, including sampling from classical energy landscapes and molecular Boltzmann distribution.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com