Fractional Volterra-type operator induced by radial weight acting on Hardy space (2506.18122v2)
Abstract: Given a radial doubling weight $\mu$ on the unit disc $\mathbb{D}$ of the complex plane and its odd moments $\mu_{2n+1}=\int_01 s{2n+1}\mu(s)\, ds$, we consider the fractional derivative $$ D\mu(f)(z)=\sum_{n=0}{\infty} \frac{\widehat{f}(n)}{\mu_{2n+1}}zn, $$ of a function $ f(z)=\sum_{n=0}{\infty}\widehat{f}(n)zn$ analytic in $\mathbb{D}$. We also consider the fractional integral operator $I\mu(f)(z)=\sum_{n=0}{\infty} \mu_{2n+1}\widehat{f}(n)zn$, and the fractional Volterra-type operator $$ V_{\mu,g}(f)(z)= I\mu(f\cdot D\mu(g))(z),\quad f\in\mathcal{H}(\mathbb{D}), $$ for any fixed $g\in\mathcal{H}(\mathbb{D})$. We prove that $V_{\mu,g}$ is bounded (compact) on a Hardy space $Hp$, $0<p<\infty$, if and only if $g$ belongs to $\text{BMOA}$ ($\text{VMOA}$). Moreover, if $\int_01 \frac{\left(\int_r1 \mu(s)\, ds\right)p}{(1-r)2}\,dr=+\infty$, we prove that $V_{\mu,g}$ belongs to the Schatten class $S_p(H2)$ if and only if $g=0$. On the other hand, if $\frac{\left(\int_r1 \mu(s)\, ds\right)p}{(1-r)2}$ is a radial doubling weight it is proved that $V_{\mu,g} \in S_p(H2)$ if and only if $g$ belongs to the Besov space $B_p$. En route, we obtain descriptions of $Hp$, $\text{BMOA}$, $\text{VMOA}$ and $B_p$ in terms of the fractional derivative $D\mu$.