Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Derivative-Hilbert operator acting on Hardy spaces (2206.12024v1)

Published 24 Jun 2022 in math.CV and math.FA

Abstract: Let $\mu$ be a positive Borel measure on the interval [0,1). The Hankel matrix $\mathcal{H}\mu= (\mu{n,k}){n,k\geq0}$ with entries $\mu{n,k}= \mu_{n+k}$, where $\mu_n=\int_{ [0,1)}tnd\mu(t)$, induces formally the operator $$\mathcal{DH}\mu(f)(z)=\sum{n=0}\infty (\sum_{k=0}\infty \mu_{n,k}a_k)(n+1)zn$$ on the space of all analytic function $f(z)=\sum_{k=0}^ \infty a_k zn$ in the unit disc $\mathbb{D}$. We characterize those positive Borel measures on $[0,1)$ such that $\mathcal{DH}\mu(f)(z)= \int{[0,1)} \frac{f(t)}{{(1-tz)2}} d\mu(t)$ for all in Hardy spaces $Hp(0<p<\infty)$, and among them we describe those for which $\mathcal{DH}_\mu$ is a bounded(resp.,compact) operator from $Hp(0<p <\infty)$ into $Hq(q > p$ and $q\geq 1$). We also study the analogous problem in Hardy spaces $Hp(1\leq p\leq 2)$.

Summary

We haven't generated a summary for this paper yet.