Generalized Hilbert operators acting from Hardy spaces to weighted Bergman spaces (2506.19338v1)
Abstract: Let $\mu$ be a positive Borel measure on the interval $[0,1)$. For $\alpha>0$, the generalized Hankel matrix $\mathcal{H}{\mu, \alpha}=(\mu{n, k, \alpha}){n, k \geq 0}$ with entries $\mu{n, k, \alpha}=\int_{[0,1)} \frac{\Gamma(n+\alpha)}{n ! \Gamma(\alpha)} t{n+k} \mathrm{d}\mu(t)$ induces formally the operator \begin{equation*} \mathcal{H}{\mu, \alpha}(f)(z)=\sum{n=0}{\infty}\left(\sum_{k=0}{\infty} \mu_{n, k, \alpha} a_k\right) zn \end{equation*} on the space of all analytic function $f(z)=\sum_{k=0}{\infty} a_{k} z{k}$ in the unit disk $\mathbb{D}$. In this paper, we characterize the measures $\mu$ for which $\mathcal{H}{\mu, \alpha}(f)$ is well defined on the Hardy spaces $Hp(0<p<\infty)$ and satisfies $\mathcal{H}{\mu, \alpha}(f)(z)=\int_{[0,1)} \frac{f(t)}{(1-t z)\alpha} \mathrm{d} \mu(t)$. Among these measures, we further describe those for which $\mathcal{H}{\mu, \alpha}(\alpha>1)$ is a bounded (resp., compact) operator from the Hardy spaces $Hp(0<p<\infty)$ into the weighted Bergman spaces $A{\alpha-2}q $.