Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hilbert-type operator induced by radial weight (2007.15402v2)

Published 30 Jul 2020 in math.CV and math.FA

Abstract: We consider the Hilbert-type operator defined by $$ H_{\omega}(f)(z)=\int_01 f(t)\left(\frac{1}{z}\int_0z B{\omega}_t(u)\,du\right)\,\omega(t)dt,$$ where ${B{\omega}\zeta}{\zeta\in\mathbb{D}}$ are the reproducing kernels of the Bergman space $A2_\omega$ induced by a radial weight $\omega$ in the unit disc $\mathbb{D}$. We prove that $H_{\omega}$ is bounded from $H\infty$ to the Bloch space if and only if $\omega$ belongs to the class $\widehat{\mathcal{D}}$, which consists of radial weights $\omega$ satisfying the doubling condition $\sup_{0\le r<1} \frac{\int_r1 \omega(s)\,ds}{\int_{\frac{1+r}{2}}1\omega(s)\,ds}<\infty$. Further, we describe the weights $\omega\in \widehat{\mathcal{D}}$ such that $H_\omega$ is bounded on the Hardy space $H1$, and we show that for any $\omega\in \widehat{\mathcal{D}}$ and $p\in (1,\infty)$, $H_\omega:\,Lp_{[0,1)} \to Hp$ is bounded if and only if the Muckenhoupt type condition \begin{equation*} \sup\limits_{0<r<1}\left(1+\int_0r \frac{1}{\widehat{\omega}(t)p} dt\right){\frac{1}{p}} \left(\int_r1 \omega(t){p'}\,dt\right){\frac{1}{p'}} <\infty, \end{equation*} holds. Moreover, we address the analogous question about the action of $H_{\omega}$ on weighted Bergman spaces $Ap_\nu$.

Summary

We haven't generated a summary for this paper yet.